Math 254B Lecture 19 Notes

Daniel Raban

May 10, 2019

1 Hausdorff Dimension and The Mass Distribution Principle
1.1 Hausdorff measure

Let (X, p) be a metric space.

Theorem 1.1. m}, restricts to a measure on (X, Bx).

Proof. The reason is that m?, is a metric outer measure: if dist(A, B) > 0, then m} (AU
B) =m}A+m}B. O

Lemma 1.1. Let o > 0. If H3 (A) =0, then m},(A) = 0.

Proof. 1t ",(diam(E;)* < ¢, then diam(E;) < ¢'/* for all i. So HY )W (A) <e Asels
arbitrary, we get m}A = 0. O

Corollary 1.1. dimpy(A) = inf{a : m3 A = 0}.
Lemma 1.2. If0 < a <, and ngA > 0, then m},A = oo.

Proof. Assume m},A < oco. For all § > 0, there is a covering | J; E; 2 A with diam(£;) <6
such thta ), (diam(E;))* < m}A. Then

HY(A) < Z(diam(Ei))ﬂ < 6770 " (diam(B;))* = 67" *m} A,

7

SO mzA =0. O

1.2 Properties of Hausdorff dimension

Proposition 1.1. Hausdorff dimension has the following properties:
1. If A C B, then dimy(A) < dimy(B).
2. If A=J;2, A;, then dimp(A) = sup; dim(4;).
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3. dimy < dimp (lower box-covering dimension)

4 I F (X, px) = (Yapy) s such that py (f(z), f(y)) < Xpx(,y)* for0< s <1 and
C >0, then m(’;/s(f(A)) < C*m(A). In particular, dimg(f(A)) < dimg(A)/s.

Proof. For the second statement, > holds vt the first ststament. For <, suppose o >
sup; dimg (A;). Then m}A; =0 for all 4, so m}A <>, m}A; = 0.

For the fourth statement, let A C | J; E; with diam(E;) < 6. THen f(A) C |, fE; with
diam(fFE;) < 0§° and Y,(diam(fE;))*/* < C%/* ", (diam(E;))*. The left hand side is
> Hac{;if(A)) — 0, and the right hand side is close to C*/*H$(A). O

Remark 1.1. If f : R? — R with |f(x) — f(2)| = r|z — y|, then m%(f(A)) = r*mZ(A).
Also, in R?, m¥ is translation invariant.

1.3 Bounds on fractal dimension: the mass distribution principle

To find an upper bound on any of our 3 notions of fractal dimension, we need to find
an efficient cover. To find a lower bound on the dimension, we need to analyze arbitrary
covers. But there are tools to do this.

Proposition 1.2 (Mass distribution principle). Let (X, p) be metric space, and let A € Bx.
If there is a positive finite Borel measure p on X such that u(X \ F) =0, pA > 0, and for
some dg > 0, uBs(x) < x6% for all x € A and § < &y, then

—_

H3(A) 2 p(d) V6 < by,

Proof. If A C |J; E; and diam(E;) = ¢; < ¢ for some ¢ < dp, assume that E; N A # @ for
each i. Then E; C By, (z;) for some z; € E; N A. So puE; < puBs,(z;) < ¢df*. So

¢y 67 =D uE; > pA. 0

So the problem of lower bounds can be reduced to finding the right measure.

Example 1.1. HZ([0,1]%) < O4(1), so mg[0,1]¢ < co. To get alower bound, € Leb(Bs(x)) <
C56%. Leb |[0’1]d satisfies the mass distribution principle at dimension d, so mg4[0, 1]¢ < 0.
So mg a Leb.

Example 1.2. Let C, be the middle-aw Cantor set. Construct u € P(Cy,) as follows:
1. Let ¢ : {0,1} = C,, and let pu = p,((1/2,1/2)*N).

2. Let pu[0,x] be the corresponding measure with the distribution function equal to the
Cantor staircase function.



Either way, u(I) = 277 if I is a basic interval covering C,, at generation i. On the other

hand, |I| = ((1 — «)/2))"*. So for basic intervals,
(T = [1]1o5@)/ log(2/(1-a).

If now J equals any interval that intersects C, with 0 < |J| < 1 pick ¢ such that

(152)71 < |J]| < (152)". Then the number of basic intervals of generation i that can

intersect J is < Oy (1). So
((J) < On(1)|1]1082)/ 108(2/(1=0)) < ) (1)].J|!08(2)/ log(2/(1=a))
So
Mog(2), log(2/(1—a)) Car > 0-
Here is an extension of the mass distribution principle:

Proposition 1.3. Let A, u as before. If
lim su
n—>oop re

for all z € A, then mgA > u(A)/c.

Proof. Let ¢ > ¢, and let A, = {z : p(By(x)) < dr*Vr < 1/n}. Run the previous

version. OJ
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