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1 Hausdorff Dimension and The Mass Distribution Principle

1.1 Hausdorff measure

Let (X, ρ) be a metric space.

Theorem 1.1. m∗α restricts to a measure on (X,BX).

Proof. The reason is that m∗α is a metric outer measure: if dist(A,B) > 0, then m∗α(A∪
B) = m∗αA+m∗αB.

Lemma 1.1. Let α > 0. If Hα∞(A) = 0, then m∗α(A) = 0.

Proof. If
∑

i(diam(Ei)
α < ε, then diam(Ei) < ε1/α for all i. So Hα

ε1/α
(A) < ε. As ε is

arbitrary, we get m∗αA = 0.

Corollary 1.1. dimH(A) = inf{α : m∗αA = 0}.

Lemma 1.2. If 0 < α < β, and m∗βA > 0, then m∗αA =∞.

Proof. Assume m∗αA <∞. For all δ > 0, there is a covering
⋃
iEi ⊇ A with diam(Ei) ≤ δ

such thta
∑

i(diam(Ei))
α ≤ m∗αA. Then

Hβδ (A) ≤
∑
i

(diam(Ei))
β ≤ δβ−α

∑
i

(diam(Ei))
α = δβ−αm∗αA,

so m∗βA = 0.

1.2 Properties of Hausdorff dimension

Proposition 1.1. Hausdorff dimension has the following properties:

1. If A ⊆ B, then dimH(A) ≤ dimH(B).

2. If A =
⋃∞
i=1Ai, then dimH(A) = supi dim(Ai).
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3. dimH ≤ dimB (lower box-covering dimension)

4. If f : (X, ρX)→ (Y, ρY ) is such that ρY (f(x), f(y)) ≤ XρX(x, y)s for 0 < s ≤ 1 and
C > 0, then m∗α/s(f(A)) ≤ Cα/sm∗α(A). In particular, dimH(f(A)) ≤ dimH(A)/s.

Proof. For the second statement, ≥ holds vt the first ststament. For ≤, suppose α >
supi dimH(Ai). Then m∗αAi = 0 for all i, so m∗αA ≤

∑
im
∗
αAi = 0.

For the fourth statement, let A ⊆
⋃
iEi with diam(Ei) < δ. THen f(A) ⊆

⋃
i fEi with

diam(fEi) ≤ Cδs and
∑

i(diam(fEi))
α/s ≤ Cα/s

∑
i(diam(Ei))

α. The left hand side is

≥ Hα/sCδsf(A))→ 0, and the right hand side is close to Cα/sHαδ (A).

Remark 1.1. If f : Rd → Rd with |f(x) − f(x)| = r|x − y|, then m∗α(f(A)) = rαm∗α(A).
Also, in Rd, m∗α is translation invariant.

1.3 Bounds on fractal dimension: the mass distribution principle

To find an upper bound on any of our 3 notions of fractal dimension, we need to find
an efficient cover. To find a lower bound on the dimension, we need to analyze arbitrary
covers. But there are tools to do this.

Proposition 1.2 (Mass distribution principle). Let (X, ρ) be metric space, and let A ∈ BX .
If there is a positive finite Borel measure µ on X such that µ(X \F ) = 0, µA > 0, and for
some δ0 > 0, µBδ(x) ≤ xδα for all x ∈ A and δ ≤ δ0, then

Hαδ (A) ≥ 1

c
µ(A) ∀δ < δ0.

Proof. If A ⊆
⋃
iEi and diam(Ei) = δi < δ for some δ ≤ δ0, assume that Ei ∩ A 6= ∅ for

each i. Then Ei ⊆ Bδi(xi) for some xi ∈ Ei ∩A. So µEi ≤ µBδi(xi) ≤ cδαi . So

c
∑
i

δαi ≥
∑
i

µEi ≥ µA.

So the problem of lower bounds can be reduced to finding the right measure.

Example 1.1. Hdδ([0, 1]d) ≤ Od(1), somd[0, 1]d <∞. To get a lower bound, ∈ Leb(Bδ(x)) ≤
Cδδ

d. Leb |[0,1]d satisfies the mass distribution principle at dimension d, so md[0, 1]d < 0.
So md αLeb.

Example 1.2. Let Cα be the middle-α Cantor set. Construct µ ∈ P (Cα) as follows:

1. Let ϕ : {0, 1}N → Cα, and let µ = ϕ∗((1/2, 1/2)×N).

2. Let µ[0, x] be the corresponding measure with the distribution function equal to the
Cantor staircase function.

2



Either way, µ(I) = 2−i if I is a basic interval covering Cα at generation i. On the other
hand, |I| = ((1− α)/2))i. So for basic intervals,

µ(I) = |I|log(2)/ log(2/(1−α)).

If now J equals any interval that intersects Cα with 0 ≤ |J | ≤ 1 pick i such that
(1−α2 )i+1 ≤ |J | < (1−α2 )i. Then the number of basic intervals of generation i that can
intersect J is ≤ Oα(1). So

µ(J) ≤ Oα(1)|I|log(2)/ log(2/(1−α)) ≤ Oα(1)|J |log(2)/ log(2/(1−α)).

So
mlog(2)/ log(2/(1−α))Cα > 0.

Here is an extension of the mass distribution principle:

Proposition 1.3. Let A,µ as before. If

lim sup
n→∞

µ(Bn(x))

rα
≤ c

for all x ∈ A, then mαA ≥ µ(A)/c.

Proof. Let c′ > c, and let An = {x : µ(Br(x)) ≤ c′rα ∀r ≤ 1/n}. Run the previous
version.
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