Math 254B Lecture 19 Notes

Daniel Raban

May 10, 2019

1 Hausdorff Dimension and The Mass Distribution Principle

1.1 Hausdorff measure

Let (X, ρ) be a metric space.

Theorem 1.1. m_{α}^* restricts to a measure on (X, \mathcal{B}_X) .

Proof. The reason is that m_{α}^* is a **metric outer measure**: if dist(A, B) > 0, then $m_{\alpha}^*(A \cup B) = m_{\alpha}^*A + m_{\alpha}^*B$.

Lemma 1.1. Let $\alpha > 0$. If $\mathcal{H}^{\alpha}_{\infty}(A) = 0$, then $m^*_{\alpha}(A) = 0$.

Proof. If $\sum_{i} (\operatorname{diam}(E_i)^{\alpha} < \varepsilon$, then $\operatorname{diam}(E_i) < \varepsilon^{1/\alpha}$ for all *i*. So $\mathcal{H}^{\alpha}_{\varepsilon^{1/\alpha}}(A) < \varepsilon$. As ε is arbitrary, we get $m^*_{\alpha}A = 0$.

Corollary 1.1. $\dim_H(A) = \inf\{\alpha : m_{\alpha}^*A = 0\}.$

Lemma 1.2. If $0 < \alpha < \beta$, and $m_{\beta}^*A > 0$, then $m_{\alpha}^*A = \infty$.

Proof. Assume $m_{\alpha}^* A < \infty$. For all $\delta > 0$, there is a covering $\bigcup_i E_i \supseteq A$ with diam $(E_i) \le \delta$ such that $\sum_i (\operatorname{diam}(E_i))^{\alpha} \le m_{\alpha}^* A$. Then

$$\mathcal{H}^{\beta}_{\delta}(A) \leq \sum_{i} (\operatorname{diam}(E_{i}))^{\beta} \leq \delta^{\beta-\alpha} \sum_{i} (\operatorname{diam}(E_{i}))^{\alpha} = \delta^{\beta-\alpha} m^{*}_{\alpha} A,$$

so $m_{\beta}^*A = 0$.

1.2 Properties of Hausdorff dimension

Proposition 1.1. Hausdorff dimension has the following properties:

1. If $A \subseteq B$, then $\dim_H(A) \leq \dim_H(B)$.

2. If $A = \bigcup_{i=1}^{\infty} A_i$, then $\dim_H(A) = \sup_i \dim(A_i)$.

- 3. $\dim_H \leq \dim_B$ (lower box-covering dimension)
- 4. If $f: (X, \rho_X) \to (Y, \rho_Y)$ is such that $\rho_Y(f(x), f(y)) \leq X \rho_X(x, y)^s$ for $0 < s \leq 1$ and C > 0, then $m^*_{\alpha/s}(f(A)) \leq C^{\alpha/s} m^*_{\alpha}(A)$. In particular, $\dim_H(f(A)) \leq \dim_H(A)/s$.

Proof. For the second statement, \geq holds vt the first statement. For \leq , suppose $\alpha > \sup_i \dim_H(A_i)$. Then $m_{\alpha}^*A_i = 0$ for all i, so $m_{\alpha}^*A \leq \sum_i m_{\alpha}^*A_i = 0$.

For the fourth statement, let $A \subseteq \bigcup_i E_i$ with $\operatorname{diam}(E_i) < \delta$. Then $f(A) \subseteq \bigcup_i fE_i$ with $\operatorname{diam}(fE_i) \leq C\delta^s$ and $\sum_i (\operatorname{diam}(fE_i))^{\alpha/s} \leq C^{\alpha/s} \sum_i (\operatorname{diam}(E_i))^{\alpha}$. The left hand side is $\geq \mathcal{H}_{C\delta^s}^{\alpha/s} f(A) \to 0$, and the right hand side is close to $C^{\alpha/s} \mathcal{H}_{\delta}^{\alpha}(A)$.

Remark 1.1. If $f : \mathbb{R}^d \to \mathbb{R}^d$ with |f(x) - f(x)| = r|x - y|, then $m^*_{\alpha}(f(A)) = r^{\alpha}m^*_{\alpha}(A)$. Also, in \mathbb{R}^d , m^*_{α} is translation invariant.

1.3 Bounds on fractal dimension: the mass distribution principle

To find an upper bound on any of our 3 notions of fractal dimension, we need to find an efficient cover. To find a lower bound on the dimension, we need to analyze arbitrary covers. But there are tools to do this.

Proposition 1.2 (Mass distribution principle). Let (X, ρ) be metric space, and let $A \in \mathcal{B}_X$. If there is a positive finite Borel measure μ on X such that $\mu(X \setminus F) = 0$, $\mu A > 0$, and for some $\delta_0 > 0$, $\mu B_{\delta}(x) \le x \delta^{\alpha}$ for all $x \in A$ and $\delta \le \delta_0$, then

$$\mathcal{H}^{\alpha}_{\delta}(A) \ge \frac{1}{c}\mu(A) \qquad \forall \delta < \delta_0.$$

Proof. If $A \subseteq \bigcup_i E_i$ and diam $(E_i) = \delta_i < \delta$ for some $\delta \leq \delta_0$, assume that $E_i \cap A \neq \emptyset$ for each *i*. Then $E_i \subseteq \overline{B_{\delta_i}(x_i)}$ for some $x_i \in E_i \cap A$. So $\mu E_i \leq \mu B_{\delta_i}(x_i) \leq c \delta_i^{\alpha}$. So

$$c\sum_{i}\delta_{i}^{\alpha} \geq \sum_{i}\mu E_{i} \geq \mu A.$$

So the problem of lower bounds can be reduced to finding the right measure.

Example 1.1. $\mathcal{H}^d_{\delta}([0,1]^d) \leq O_d(1)$, so $m_d[0,1]^d < \infty$. To get a lower bound, $\in Leb(B_{\delta}(x)) \leq C_{\delta}\delta^d$. Leb $|_{[0,1]^d}$ satisfies the mass distribution principle at dimension d, so $m_d[0,1]^d < 0$. So $m_d \alpha$ Leb.

Example 1.2. Let C_{α} be the middle- α Cantor set. Construct $\mu \in P(C_{\alpha})$ as follows:

- 1. Let $\varphi : \{0,1\}^{\mathbb{N}} \to C_{\alpha}$, and let $\mu = \varphi_*((1/2, 1/2)^{\times \mathbb{N}})$.
- 2. Let $\mu[0, x]$ be the corresponding measure with the distribution function equal to the Cantor staircase function.

Either way, $\mu(I) = 2^{-i}$ if I is a basic interval covering C_{α} at generation i. On the other hand, $|I| = ((1 - \alpha)/2))^i$. So for basic intervals,

$$\mu(I) = |I|^{\log(2)/\log(2/(1-\alpha))}.$$

If now J equals any interval that intersects C_{α} with $0 \leq |J| \leq 1$ pick i such that $(\frac{1-\alpha}{2})^{i+1} \leq |J| < (\frac{1-\alpha}{2})^i$. Then the number of basic intervals of generation i that can intersect J is $\leq O_{\alpha}(1)$. So

$$\mu(J) \le O_{\alpha}(1)|I|^{\log(2)/\log(2/(1-\alpha))} \le O_{\alpha}(1)|J|^{\log(2)/\log(2/(1-\alpha))}.$$

 So

$$m_{\log(2)/\log(2/(1-\alpha))}C_{\alpha} > 0.$$

Here is an extension of the mass distribution principle:

Proposition 1.3. Let A, μ as before. If

$$\limsup_{n \to \infty} \frac{\mu(B_n(x))}{r^{\alpha}} \le c$$

for all $x \in A$, then $m_{\alpha}A \ge \mu(A)/c$.

Proof. Let c' > c, and let $A_n = \{x : \mu(B_r(x)) \leq c'r^{\alpha} \forall r \leq 1/n\}$. Run the previous version.